If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2-24=0
a = 49; b = 0; c = -24;
Δ = b2-4ac
Δ = 02-4·49·(-24)
Δ = 4704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4704}=\sqrt{784*6}=\sqrt{784}*\sqrt{6}=28\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28\sqrt{6}}{2*49}=\frac{0-28\sqrt{6}}{98} =-\frac{28\sqrt{6}}{98} =-\frac{2\sqrt{6}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28\sqrt{6}}{2*49}=\frac{0+28\sqrt{6}}{98} =\frac{28\sqrt{6}}{98} =\frac{2\sqrt{6}}{7} $
| 1/2(2w+1)=2/5 | | -x+3=3x+23 | | (x-12)^2=196 | | -2-5x=-2x-38 | | 9/5h-7/12=3/4h-13/6 | | 7+23m=58 | | 1.25^x=300 | | (7/6)(6d-18)-23=19 | | -4x+1=-11-2x | | 11=2w−-5 | | 12/15=x/6 | | 3x+1=6+ | | -5p+9p=-12 | | 5k−4k=3 | | (7-x)/(x)-(x)/(x+8)=5 | | -5p+9=-12 | | d/8+7=19 | | 9x-8x+3=7x+16 | | 38-x=7x-2 | | 3(g–1)+7=3g+4 | | 32=2x+2(x-6) | | 4n−3n=14 | | 13d+-15d+6=-10 | | -5y+9=-6y^2 | | 26x+1=5(5x+5) | | 6x/5+4=22 | | -2(2x-3)=-6x+9 | | 1/5x+32=x | | -14=(-9)+q | | C(x)=12x+84,0000 | | 8-6(x-4)=2x-2(4x-16) | | -4+6k+8k=-4-4k |